यदि रैखिक समीकरण निकाय $x-2 y+k z=1$, $2 x+y+z=2$, $3 x-y-k z=3$ का एक हल $( x , y , z ), z \neq 0$, है, तो $( x , y )$ जिस रेखा पर स्थित है, उसका समीकरण है
$3x -4y -1 = 0$
$4x -3y -4 = 0$
$4x -3y -1 = 0$
$3x -4y -4 = 0$
निम्न समीकरण निकाय पर विचार कीजिए : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ जहाँ $a , b$ तथा $c$ वास्तविक अचर हैं। तो इस समीकरण निकाय:
$\left| {\,\begin{array}{*{20}{c}}0&{p - q}&{p - r}\\{q - p}&0&{q - r}\\{r - p}&{r - q}&0\end{array}\,} \right| = $
माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ तीन A.P. है, जिनका सार्वअंतर $\mathrm{d}$ है तथा जिनके पहले पद क्रमशः $\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2$, है। माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ के $7$ वाँ, $9$ वाँ व $17$ वाँ पद क्रमश: $a, b, c$ है तथा $\left|\begin{array}{lll}\mathrm{a} & 7 & 1 \\ 2 \mathrm{~b} & 17 & 1 \\ \mathrm{c} & 17 & 1\end{array}\right|+70=0$ है। यदि $\mathrm{a}=29$, है, तो उस $AP$ जिसका पहला पद $\mathrm{c}-$ $\mathrm{a}-\mathrm{b}$ है तथा सार्वअंतर $\frac{\mathrm{d}}{12}$ है, के प्रथम $20$ पदों का योग बराबर ____________ है।
यदि रैखिक समीकरण निकाय $x+k y+3 z=0$,$3 x+k y-2 z=0$,$2 x+4 y-3 z=0$ का एक शून्येतर हल $(x, y, z)$ है, तो $\frac{x z}{y^{2}}$ बराबर है
उन पूर्णाकों $x$ की संख्या क्या होगी जो $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ को संतुष्ट करते हैं